A programmable array microscope (PAM) incorporates a spatial light modulator (SLM) placed in the primary image plane of a widefield microscope, where it is used to define patterns of illumination and/or detection. We describe the characteristics of a special type of PAM collecting two images simultaneously. The conjugate image (Ic) is formed by light originating from the object plane and returning along the optical path of the illumination light. The non-conjugate image (Inc) receives light from only those regions of the SLM that are not used for illuminating the sample. The dual-signal PAM provides much more time-efficient excitation than the confocal laser scanning microscope (CLSM) and greater utilization of the available emission light. It has superior noise characteristics in comparison to single-sided instruments. The axial responses of the system under a variety of conditions were measured and the behaviour of the novel Inc image characterized. As in systems in which only Ic images are collected (Nipkow-disc microscopes, and previously characterized PAMs), the axial response to thin fluorescent films showed a sharpening of the axial response as the unit cell of the repetitive patterns decreased in size.